‘AD-A193 644 TERM RENRITING: SOME EXPERIMENTAL RESULTSCU) NORTH
CAROLINAR UNIY AT CHRPEL HILL DEPT OF COMPUTER SCIENCE
R POTTER ET AL. OCT 87 TR87-834 NO0914-86-K-9680

UNCLASSIFIED F/G 12/2

\R
(‘ & y v{"z’

"n‘}
M2s Bz e s
I O |] -..k H "\yC
3.2 T— -l R‘ “'ﬂ .,
= kg2 e
—— :‘ﬁ m ; !.
.0
g | F uz.o
Wui

o

I i

=
=
o

MICROCOPY RESOLUTION TEST CHART
REM - STANDARDS - 1963-2

BT *"»3?3"' RS 'w-:::.
v ‘ .

o*‘&iln;f :.o‘p'
't;'l §%y ¥ l-..l ig.] '.
A N Al % x‘ s' «‘.‘s‘. e-. u' ' R fale by

"‘?"*k"r' digte Lyt RO ‘a" u':'a') W N l" 6':'@ G

R A A I I N N N T L R D RO OO RO O R

» QT FILE COBY -

4

644

Term Rewriting: Some Experimental Results ‘5

TR87-034 R
October, 1987

AD-A193

Richard Potter and David Plaisted R

The University of North Carolina at Chapel Hill \
Department of Computer Science

Sitterson Hall, 083A

Chapel Hill, NC 27599-3175

ELECTE R

APR 1 5 1988 [
DISTRIBUTION STATEMENT A R

Approved for public release; H)
Distribution Unlimitedr .

D O O N o O PO T I O o L U L LY N R O MO DO NN A,

T R TR R AL N N R AR AN AR EN RN ER W) WL W U S N At BTN AT

Term Rewriting: Some Experimental Results

Richard C. Potter
David A. Plaisted
Department of Computer Science
University of North Carolina at Chapel Hill
Chapel Hill, North Carolina 27514

Abstract” We discuss term rewriting in conjunction with sprfn, a Prolog-based theorem prover.
Two techniques for theorem proving that utilize term rewriting are presented. We demonstrate their effec-
tiveness by exhibiting the results of our experiments in proving some theorems of von Neumann-Bernays-
Go del set theory. Some outstanding problems associated with term rewriting are also addressed. _

-
+

This research was supported in part by the National Science Foundation under grant DCR-8516243 and by -

the Office of Naval Research under grant N00014-86-K-0680.

PN

\

R N T T N R S O O OO DU OO DD DO OU DO

L Introduction

T Term rewriting is one of the more powerful techniques that can be employed in mechanical theorem
proving. ’I‘eﬁn rewriting allows us to prove fairly sophisticated theorems that are beyond the ability of
most resolution-based theorem provers. Unlike resolution, term rewriting seems to duplicate a rule of
inference that humans use in constructing proofs. In this paper, we will describe our research and results in
proving theorems via term rewriting. The body of theorems we prove are set theoretic; the axiomatization
of set theory employed is derived from the work of von Neumann, Bernays, and Godel. For a list of these
axioms, see [2]. The advantage of the von Neumann-Bemays- G¢ del formalization is that it allows us to
express set theory in first-order logic. This in tum implies that a first-order theorem prover can be used to
derive set theoretic theorems. On the other hand, this formalization has a significant disadvantage in that it

is very clumsy for humans to use. Second order logic is a much cleaner means for expressing the axioms

of set theory.

We begin by introducing sprfn, the Prolog-based theorem prover we used in our research; we
emphasize the formal deduction system underlying the prover. In the second section we describe the term
rewriting mechanism built into sprin. In the third and fourth sections we describe two theorem proving
techniques utilizing term rewriting and the results of these approaches when employed in connection with
sprfn. In cach of these two sections we give examples of sample theorems that we were able to derive.

We conclude by summarizing our results and addressing some problems that face term rewriting in general

as well as some problems specific to term rewriting with sprin.

4

3
1

P

IR ey St

" P

S

S B

< —
-]

S

lo Be LN U U TR LY BYIPTE AN YR RN S " LR AR OISR PO AN A P S T L |

2. SPRFN and the Simplified Problem Reduction Format

The theorem prover we used —~ sprfn -- is based on a natural deduction system in first order logic
which is described in [1). However, before we present this formal system, we would like to motivate it by
describing the format on which it is based; namely, the problem reduction format. The formal deduction
system implemented by sprfn is a refinement of the problem reduction format. Both of them embody the
same goal-subgoal structure, as can be seen from what follows. The following description omits many

details. For a complete discussion of the problem reduction format, see [5].

The structure of the problem reduction format is as follows. One begins with a conclusion G to be
established and a collection of assertions presumed to be true. Assertions are of the form
C:-a A, ... A, (implication) or P (premises) where A;, P and C are literals or negations of literals.
The implication assertion is understood to mean A ;&A, - - - &4, —5C . The A;’s are antecedent statements,
or simply antecedents, and C is the consequent of the implication. We call the conclusion G the top-goal.
The process of attempting to confirm the conclusion begins with a search of the premises to see if one
premise matches (is identical with or can be made identical by unification with) the goal G. If a premise
P, matches G then the conclusion is confirmed by P,. Otherwise, the set of implications whose conse-
quents match G is found. If the antecedent of one implication can be confirmed then one has confirmed the
consequent, and hence G, which the consequent matches. Otherwise we consider the antecedents as new
subgoals to be confirmed, one implication at a time. These goals are called subgoals because none of them
is the primary goal. The process of confirming these subgoals involves repeating the method just described
in connection with the top-goal.

The natural deduction system underlying sprfn -- the modified problem reduction format -- is based

on the problem reduction format just described, although refinements are added for the sake of complete-1on For

ness of the deduction system. We do not have room to describe these refinements. The following descrip- ?RA&I

tion of the modified problem reduction format omits many details. For a complete discussion, see(4].

X,
A clause is a disjunction of literals, A Horn-like clause, converted from a clause, is of the form %Lo
nition R

L =Ly L,,.. L, where L and the L;’s are literals. L is called the head literal. The L;’s constitute the 5111ty Codes

Avail and/or
Dist '

INERE WA P RN PR R R RN Y TN LN PTG UL FU R TR VU OV WA IR T AU WA A TR U UL PO PO PO

¢

clause body. A clause is converted to a Hom-like clause as follows. For a given clause containing at least
one positive literal, one of its positive literals is chosen as the head literal and all other literals are put in the
clause body negated. For an all-negative clause, we use false as the head literal and form the body from
positive literals corresponding to the original literals. '

Now assume S is a set of Hom-like clauses. A set of inference rules, derived from S, is obtained as y

follows. Foreachclause L .~L,,L,,..., L, inS, we have the following clause rule:

PSSO

Clause Rules

TooL=>T=L, ILy=>TyaL,, ..., [, oL, =>T,5L,
oL => Tl

We also have assumption axioms and a case analysis (splitting) rule. Let L be a positive literal.

‘; Then the assumption axioms and case analysis rule can be stated as follows:
»: ;
b !
o Assumption Axioms ¢
; L =>T-L ifLel :
4 - - = t
" M-L=>TL-L .
% fa.
’ Case Analysis (splitting) Rule -
| _ M
v oL =>T, ML, T,MoL =>T;, ML g
! TooL => Tol !
[} "
4 l.
The goal-subgoal structure of this deduction system is evident. The input clause L:-L,L,, ..., L,
' merely states that L, .L,, - - L, have to be confirmed in order to confirm L. The corresponding clause ‘.f
4
" rule for L :- L, L,,..,L, states that, if the initial subgoal is L, then make L,, ...,L, subgoals in suc- \
3 -
¢ cession; add 0 [successively the literals that are needed 10 make each one provable; and finally, return ¥
Iy—oL win ¢ T, contains all the literals needed tomake L, . . . ,L, provable. .
) .;Q
v
A Sprfa implements the natural deduction system just described. Sprfn exploits Prolog style depth- :
first iterative-deepening search. This search strategy involves repeatedly performing exhaustive depth-first .
L]
search with increasing depth bounds. For a description of the strategy, see [6]. This search strategy is \
o
1
4 A,
(9
v
i

- ~ ; . ’ O
T T T S T T T O O D M R e O A OB M O O D D O O O IO U U U SRR S DA S

complete and can be efficiently implemented in Prolog, taking advantage of Prolog’s built-in depth-first o
search with backtracking.) ;

3. SPRFN and Term Rewriting ¥

3.1, Input Format X

The input to sprfn is formatted in Horn-like clauses. Given a set S of clauses, we convert them into
Horn-like clauses as follows. For a clause containing at least one positive literal, we select one such literal »
to be the head, negate the remaining literals, and move them to the body of the clause. For an all-negative),
clause, we use false as the head of the clause and form the body from the positive literals corresponding to
the original literals. The following example shows how to translate from clause form into the format W%

accepted by sprfn. Notice the similarity of the input format syntax to Prolog program syntax. Y

Clause Form |§

P(x)VQ(x) o
~P(x)VR(x) XN

N
~Q(x)VR(x))

~R (a) ‘0:*

3

Input Format for sprifn

~~ -~ -
PLe I P g

A _J g

p(X):- not(q(X))
r(X):=pX)
rX):-qX)
false - r(a)

EEX XA,
- .o

.

; » ' . . . vy oy L
REROOUOUOC 0 JOUR MU X 4 X LO0 b X YRS) X5 ql.'d.‘gi.’d O XY al‘."‘»“‘.l"ﬂ. M pe N ¥ .\' M PO M N MY My o

: c et et R gt LSRR
‘!'v\'b 't\\‘- I Iy

- » - . - o - - oW o -
S A A N S i e M N R CRIC o O W 2 |'..o'~. W5 G50, Nt e Y '».-. NN et S

S Ay ey A7, “ A a0 IR AN L N WA O e P AT L WU P . YU YT

For input to sprfn, the convention is that a name starting with a capital letter is a variable name; all
other names are predicate names, function names or constants. Not and false are reserved for negation and

for the head of the top-level goal, respectively.

3.2. The Method of Proof

The prover attempts to prove that false is derivable from the input clauses. For example, given the

following set of clauses:

pX) - not(q(X))
rX):-pX)
riX):—qX)
false :—r(a)

sprin will derive the following proof:

false :- cases(
(not q(a): (r(a) :- (p(a) :- not q(a)))),
(q(@): (r(a) :- q(a)))

Thus, false can be proven from the input clauses. For there are two cases to consider: (1) Suppose not q(a)
is true; then we can derive faise as follows. Since we are given that false :- r(a), we make r(a) our subgoal.
Now we can derive r(a) if we can prove p(a), since we are given r(X) :- p(X). Meanwhile, we can derive
p(a) if we can prove not q(a), since we are given p(X) :- not q(X). However, we are assuming not g(a), so
this subgoal can be proven. (2) Suppose q(a) is true; then we can derive false as follows. Once again, we
make r(a) our subgoal, since we are given that false :- r(a). Now we can derive r(a) if we can prove q(a),

since we are given r(X) :- g(X). But we are assuming q(a), so this subgoal can be proven.

Ta s b wts et el gt

g ey

DEOAGSOOCO0MX

3.3. The Term Rewriting Mechanism in SPRFN

Replace. An assertion of the form replace(<exprl>, <expr2>) in the input signifies that all subgoals
of form <exprl> should be replaced by subgoals of the form <expr2> before attempiing to solve them.

This is like a rewrite applied at the ‘top level’. This is sound if <exprl> :- <expr2> is valid.

Rewrite. An assertion of the form rewrite(<exprl>, <expr2>). in the input signifies that all subex-
pressions of form <exprl> should be replaced by subexpressions of the form <expr2>. This is like a
rewrite applied anywhere, not just at the top level. This is sound if the logical equivalence <exprl> <->

<expr2> is valid, or, in case when the expressions are terms, if the equation <exprl> = <expr2> is valid.

In our experiments, we translated the axioms of von Neumann-Bemnays-Go del set theory into a list
of rewrite rules and then attempted to derive various theorems based on these rules. For example, consider

the axiom for Subset below:

vVx.y)xy © (Vu)l(uex s uey)ll

This would be translated into the following two rewrite rules, which would be given as input to the prover:

rewrite(sub(X,Y), or(not(el(f17(X,Y),X)), el(f17(X.Y),Y))).
rewrite(not(sub(X,Y)), and(el(U,X), not(el(U,Y)))).

Several points deserve mention. First of all, note that the single axiom gives rise to two rewrite rules
-- a "positive” as well as a "negative” rule. This is to preserve soundness, since sprfn performs outermost
term rewriting. The presence of the negative rewrite rule insures that whenever sprfn rewrites a term of
the form sub(X,Y) with or(not(el(fl7(X.Y).X)), el(f17(X.Y),Y))) (which implies that spraf is using the posi-
tive rule) we know that this term does not appear in a negative context; for if it did, the prover would

already have rewritten it using the negative rule.

~ - - et A A AT ANA, S A M e R M A Nt oA R Lt A
.,'l‘n'i.'t.‘\.'i.'!‘.'l.t- KR " .'l. \‘-'l‘:.l"'u 5 J“I". ¢ ’)‘\ ,n.n i X) N XN \'\

4% 48 a

94,2

WAL

Lo > . -
", by - e am e
AT T -

k3
-

. W o~ A A A At A R Tt A,
"."‘,-"'-":s‘“ “'4'-*"‘-""‘,s"l.,o‘h"‘,v" i "!.:’i‘s AW AR R S IA'..Q SO .bl.n'i. LS. '\ “ : N "'l' ’

al R TR T T TR * 2a8 raf 2B Fab) X IOKR DT IOTROTEN O

We should also point out what may seem at first to be a counter-intuitive feature of these rewrite
rules. Note the presence of the skolem function f77(X,Y) in the positive rewrite rule and the unbound vari-
able U in the negative rule. One might think that the situation should be reversed. However, the correct-
ness of this procedure can be seen by reflecting upon the following. Recall that sprfn performs subgoaling
in attempting to prove false. Thus if the prover is attempting (0 prove A, let's say, and it tries to do this by
trying to prove the subgoal B, this procedure will only be sound if it is the case that B — A. Our rewrite
rules must observe this fact. Hence, if we are trying to prove A and we attempt to do so by rewriting A
with B and then trying to prove the subgoal B, it must be the case thut B — A. Or, to put the matter in Pro-
log symbolism, it must be the case that A - B. When we skolemize the original axiom, we see that the fol-

lowing are logical consequences of the skolemized input clauses:
Suth,Y) - Ol'(n(x(el(fl-’(X,Y),x», el(fl7(x’Y)’Y))

not(sub(X.Y)) :- and(el(U,X), not(el(U,Y)))

Thus, we must express our two rewrite rules as given above.

For further details conceming the term rewriting facility, the reader should consult Appendix A.

4. Term Rewriting with a Tautology Checker

In our first experiment, we modified sprfn to make use of a tautology checker. Suppose that we
wish to prove the set theoretic theorem T, which, in accordance with the procedure outline above, has been
converted into the top-level goal: "false :- X".

If the flag t_test is set, then the prover will call the tautology checker tautolegy3(X,Y), where X is
the input theorem (derived from the top-level goal "false :- X") and Y is the output consisting of the non-
tautologous part (if any) of X. If X is a tautology, then the prover will halt; else, the original goal: "false :-
X" is retracted and replaced in the database with the new goal: "false :- Y". The prover then proceeds to

DTG

-
an e -

- "

- Ky ~ »

e

IR e ™ Ko s

CRRL -
Koo R as Bl

i T

AT

R S

e

[P R N S N PRI ST ULUN VN TR TR ARG N LV AY RN FUN N AN L U O A A

attempt to prove "false” by means of the subgoaling method described above. This method seems to work
quite well. For one thing, if "X" is a tautology, the tautology checker allows the prover 1o spot this fact
much sooner than if it had attempted to achieve its top-level goal by means of its subgoaling mechanism
alone. For another, we have found that when "X" is not a tautology, by removing the tautologous portion
of X and returning "Y" as the subgoal to be proved, we save the prover considerable time and avoid need-

lessly duplicated effort.

Note: tautology3(X,Y) does not unify variables (thus it only eliminates a disjunction as a tautology if

some literal L appears both negated and un-negated in the clause).

As a standard practice, we have included the axiom: "or(X,Y) :- prolog(tautology(or(X,Y)))" to han-
dle cases where unifying is necessary to eliminate tautologous clauses. This allows us to invoke Prolog
from within sprfn, and to call the Prolog predicate tautology/1 which succeeds if its input can be converted

into a tautology via unification.

Thus backiracking over the elimination of a tautologous clause is still possible, but it only occurs
with respect to the "or" rewrite rule. This seems more efficient than permitting backtracking into the tau-

tology3 routine itself (which would be required if we allowed unification within tautology3).

For further details concerning the tautology checker, the reader is referred to Appendix B.

We now exhibit two examples of the prover at work, utilizing the tautology checker.

4.1. Example 1

In this first example, we show how the tautology checker returns the non-tautologous portion of its

input theorem, which is then proven by sprfn’s subgoaling mechanism.

Proof of Difference and Join Theorem

Our top-level goal is:

false:-eq(diff(s,b) join(a,comp(b)))

e e -
-y -

-
-

~"F

-
Jadd i

Tl Ricdd

(20

FEE P T

..-v.j =

-

-

AR A R

After reading in the input clauses, which contain our set theoretic rewrite rules as well as a few axioms, the

prover begins by calling our tautology checker:

t_test is asserted

b_only is asserted
sohution_size_mult(0.1) is asserned
proof_size_muit(0.4) is asserted

calling(tantology3(eq(diff(a,b) join(a,comp(b))),_9812))

after removing the tautologous portion of the theorem, tautology3 returns the following:

conjunct:
m(f17(diff(a,b),comp(b)))
not el(f17(diff(a,b),comp(b)).2)
el(f17(diff(a,b).comp(b)).b)

Continue?: yes.

at this point, the tautology checker informs the user that it has a conjunction of disjunctions (in this case

there is only one such disjunction) left, which it could not eliminate via tautology checking alone. It asks

the user if he wishes to proceed, and in this case, we answer in the affirmative. The prover’s subgoaling

procedure is now invoked, and in a short time sprfn returns with the following:

checker, the prover was able to derive the theorem in 128.43 cpu seconds with 34 inferences. We

proof found
false:cases(
(not el(f17(diff(a,b),comp(b)),a):
(or(m(f17(diff(a,b),comp(b))),or(not el (f17(diff (a,b).comp(b)).a),
el(f17(diff(a,b),comp(b)),b))):-(or(not el(f17(diff(s,b).comp(b)).a),
el(f17(diff(a,b),comp(b)),b)):-nos el (1 7(diff (a,b),comp(b)).a)))).

(el(f17(diff(a,b),comp(b)).a):
(or(m(f17(diff(a,b),comp(b))),or(no el (f17(diff(a,b),comp(b)).a),
l(f17(diff(a,b),comp(b)),b))):-(m(f17(diff (a,b),comp(b)):-
el(f17(diff(a.b),comp(b)).2)))))
size of proof 7

8.73 cpu seconds used
5 inferences done

It is worth pointing out that by using the term rewriting facility without invoking the tautology

10

R e N o O N T S O O T I S e O T O O MO R T W O T O I R IR I T OR R T

attempted to prove the theorem using neither the tautology checker nor rewrite rules; but after letting the

prover run for over two hours without finding the proof, we put it out of its misery.

4.2. Example 2

In this second example, we show the prover’s term rewriting facility in action. In this particular
case, the tautology checker is able to establish that the entire input theorem is a tautology; hence it is

unnecessary to invoke sprfn’s subgoaling mechanism, since the theorem is already proven.
Proof of Power Set Theorem
Our top-level goal is:

false:-eq(pset(join(a,b)) join(pset(a) pset(b)))

After reading in the input clauses, which contain our set theoretic rewrite rules as well as a few axioms, the

prover begins by calling our tautology checker:

1_test is asserted

b_only is assented
solution_size_mult(0.1) is asserted
proof_size_mult(0.4) is asserted

calling(tautology3(eq(pset(join(a,b)) join(pset(a) pset(b)))..9818))

The rewriting mechanism displays the results of its outermost term rewriting operation:

rewrite(eq(pset(join(a,b)) join(pset(a),pset(b))) and(sub(pser(join(a,b)),
join(pset(a),pse(b))),sub(join(pset(a) pset(b)).pset(join(a,b)))))

rewrite(sub(psez(join(a,b)) join(psei(a),pset(b))),and(sub(pset(join(a,b)),
pset(a)).sub(pset(join(a,b)).pset(b))))

rewrite(sub(pset(join(a,b)) ,psea(a)),or(not el (f17(pset(join(a,b)).pset(a)),
pset(join(a,b))),el(f17(pset(join(a,b)),pect(a)).pset(a))))

rewrite(not el(f17(pset(join(a,b)),pset(a)),pset(join(a,b))),not sub(f17(pset(
join(a,b)).pset(a)) join(a,b)))

rewrite(not sub(f17(pset(join(a,b)),pset(a)),join(a,b)),or(not subf17(pset(
join(a,b)),pset(a)),a).not sub(f17(pset(join(a,b)),pses(a)),b)))

rewrite(el(f17(pset(join(a,b)),pset(a)).pser(a)), sub(f1 7(pser(join(a,b),
peet(a)),2)

0

PO

P
s"'l‘

s 9w l-g-g;a‘-r .

L]
&

>

- s
T

T

T N O R o O O R R R R R R R N Ry N W S N IR Ty

rewrite(sub(peet(join(a,b)) pact (b)) or(not el(f17 (pset(join(a b)) psei(b)),
peet(join(a,b))),l(f17(pses(join(a,b)),peet(b)),peet(b))))

rewrite(not el(f17(pse(join(a,b))pret(b)) psetoin(s.b))),not sub(f1 7(pses(
join(a,b)),pset(b)) join(a,b)))

rewrite(not sub(f17(peet(join(s,b)),pset(b)) join(a,b)),or(not sub(f17(psex(
join(a,b)),pset(b)).a)n0t sub(f17 (peet(join(a,b)),pser(b)),b)))

rewrite(el(f17(psew(join(a,b)),pset(b)) pset(b)) sublf17(pset(join(a,b)),
peet(d)),b))

rewrite(suboin(pect(s),pees(b)).peet(join(a,b))) or(not el(f1 T(oin(pset(s),
peet(b)),peex(join(a,b))),join(peet(s),peet(b))).el(f1 T(oin(peet(a), pres(b)),
peet(join(a,b))).peet(join(a,b)))

rewrite(not el(f17(join(pset(a),pset(b)),pset(join(a,b))) join(pset(a).peet(b))),
or(not el(f17(join(pset(s) pser(b)) pset(join(a,b))).pset(a)).not el (1 7(
join(pset(a),pect(b)).peet(join(a,b))).pser(b))))

rewrite(not el(f17(join(pset(n),psex(b)).psei(join(s.b))),peet(s)).not sub(fi 7(
join(peet(a),pset(b)),peet(join(a.b))).a))

rewrite(not el(f17(oin(pset(a),pset(b)).pses(join(s.b))).peet(b)).not sublf1 7(
join(peet(a),pset(b)),pset(join(a,b))),b))

rewrite(el(f17(oin(pset(a) prct(b)) prer(join(a,b))) pset(join(a,b))) sub(f1 7(
join(pset(a),pseu(b)),pses(join(a,b))) join(a,b)))

rewrite(sub(f17(join(pset(a),pses(b)).pset(join(a,b))) join(a,b)),and(subl(f17(
join(pses(a),pset(b)),peet(join(a,b))),a),sub(f17(join(pset(a) pset (b)),
peet(join(a,b))).b)))

At this point, rewriting has been completed; the procedure cnf_expand is now invoked to expand the

rewritten theorem into conjunctive normal form and to then eliminate all tautologous conjuncts.

Ve W an A W 4

call(0,cnf_expand(and(and(or(or(not sub(f17 (pses(join(a,b)),pset(a)).2),not sub(
f17(psexjoin(a,b)), psex(s)), b)), sublf17(psex(join(s,b)),pset(s)),a], or(or(not
sub(f17(peet(join(a,b)) pset(b)),a).not sub(f17(pset(join(a,b)),pset(b)),b)).sub(
f17(psexjoin(a b)), peet(b)),b))),or(or(not sub(f17 oin(peet(a), peet(b)),peet(
join(a,b))).8),n0t sub(f17(join(pset(a),pset(b)),pset(join(a,b))),b)).and(sub(f17)
(join(pset(a),pset (b)) pset(join(a,b))).a).subl(f1 7 join(pset(a),pser(b)) prex(0
join(a,b))),b))),_15815)) 3

Initially, when cnf_expand is called, its output argument is the uninstantiated Prolog variable _15815. But
when it returns, this output argument has been instantiated to the empty list, signifying that no non- .

tautologous portion of the theorem remains:

result(0,cnf_expand(and(and(or(or(not subl(f17(pset(join(a,b)),pset(s)).a).nok sub("
f17(pser(join(a.b)),pset(a)),b)),sub(f1 7 (pset(join(a,b)) pset(s)) 2} or(or(not ,
sub(f17(pset(join(a,b)),pres(b)) 8).not sublf17(pset(join(a,b)),pset(b)),b))sub(

{17(pses(join(a,b)),pect(b)).b))),or(or(not sublf17join(pser(a),pse1 (b)), pset(

join(a,b))),8).n0t sub(f17(join(pset(a),pset(b)) pset(join(a,b))),b)) and (sub(f17

(join(pset(a) pset(d)),pset(join(a,b))).a).sub(f1 T(join(pset(s),pset(b)).pset(

12

Al

" - S 1 LS R NV LP Rt LT L AL g - TR LN o W W ' y -
A ":"n?'ﬁvst"n‘x’.l";.‘l’« l.q AL I ANK (AT S N "ﬂ A LA LA ". IS AT RN S ALY A Y -8 -'." "' Al RSN AN L AN

N =

S U AN N AN RN AU AT ERN LR PEL N LY PUEUNUNUMHA R AARITANOAE AN ECEINF AR AN A U U LY LWL

Join(a,b))).b))).11)
tautology3 retums: is_tautology
theorem_is_a_tautology

4.28 cpu seconds used
0 inferences done

We observed two very important things while running these tests. First of all, we found that includ-
ing explicit rewrite rules to distribute "or" over "and" significantly slowed down the tautology checker.
(Fortunately, the cnf_expand routine is able to test for tautologies without requiring that its input argument
be in conjunctive normal form; hence employing the distribution rules is not needed.) We ran tests in
which these distribution rules were used and tests in which they were not. The results are contained in

Appendix D.

Secondly, we discovered that the depth to which term rewriting is allowed to take place greatly
affects overall performance. For example, in the case of the Power Set theorem exhibited above, we did
not include in our input the rewrite rules for the Subset axiom. By omitting those two rules (see the earlier
section: "The Term Rewriting Mechanism in SPRFN") we cause the prover to regard terms of the form
"sub(X,Y)" as atomic and thus it does not rewrite them. In this way, it is able to discover that the entire
theorem is a tautology. On the other hand, we found that if we included the rewrite rules for the Subset
axiom, then our tautology checker was no longer able to eliminate the entire theorem as a tautology;
indeed, it returned a significantly long conjunction, which the subgoaling mechanism then had to prove.
This took a much greater amount of time. (Cf. Table 2.)

For a complete summary of our test results using the tautology checker, the reader should consult
Appendix D. A complete listing of all the rewrite rules we used in our experiments can be found in Appen-
dix C.

5. Term Rewriting with a Preprocessor

In our second experiment, we used our term rewriting facility as a preprocessor. We discovered in

our earlier experiments that, as a general rule, the more complex the theorem, the greater the number of

R A N T T T T O T T T S T T I W S U N N U WU LU WU WU NLU LU N MU WL o

terms that ultimately result from rewriting the theorem. In fact, we found that for certain theorems, such as
the Composition of Homomorphisms theorem (sce below) it was physically impossible to use the tautology
checker. This was due to the fact that one term was being rewritten to a conjunction (or disjunction) of
several other terms, each of which was itself subject to being rewritten into a complex of several terms and
so on. Thus, nearly exponential growth of the Prolog structure occurred during the operation of the rewrit-
ing facility. This eventually caused Prolog to run out of stack long before the cnf_expand subroutine had a

chance to eliminate any tautologous portion of the theorem.

We decided, therefore, to preprocess the theorem by reducing the size of the term that appeared as
the body in the top-level goal. In general, our approach involved skolemizing the negated theorem and
then using the rewriting facility to produce the initial set of input clauses. As an illustration of this tech-
nique, we present the following proof of the Composition of Homomorphisms theorem. We should point
out that it was necessary to add three simple axioms in order to derive the proof; also, it was necessary
once again to restrain the depth to which rewriting took place.

Proof of Composition of Homomorphisms Theorem

Our theorem is the following:

xh 1,xh2.xs 1,x5 2,55 3.3f Lxf 2,58 3)[(hom (xh 1.xs 1.5 1,x5 2.5 2) A
¢ hom (xh”f,u'isﬁxs'?jg» ’-’{ ;.2,55, (c':rr(;ose'x(sxh .xh’f‘)‘,xs"{:} 1,x5s 3.4 3)]

After skolemizing the negation of the theorem we have three clauses to be rewritten:
hom(ah1,asl,afl,as2,af2), hom(ah2,as2,af2,as3,af3), and notthom(compose(ah2,ah1),asl, af1,as3,af3)).
Based on these clauses, the prover’s term rewriting facility produced the following set of input clauses:

Clauses derived from hom(ahl,as1,af1,as2,af2):

eq(apply(ah1,apply(afl,ord_pair(G1,G2))),
apply(af2,ord_peir(apply(ah1,G1),apply(sh1,G2)))):-
el(G1 a31), el(G2 as1).
maps(ah) as1 as2).

Etatat MBI phgt ettty

- -~

-
FaglFaP iy

- 4
LT w

-
P

P LETEL b

) o .
oaTel el

,‘.
-
- -

LN L N T RN ER Y Ly N UL OE UL RIURE PO AR T T O O T P R U T D TR T T PO Ty Q

%
e
{
!
i
"
'!
closed(as2,af2). 3
closed(as},af1). X
X
| A
Clauses derived from hom(ah2,as2,af2 as3 af3): ;:
&
!
eq(apply(sh2,spply(af2,ord_pair(G3,G4))),
apply(af3,ord_pair(apply(ah2,G3).apply(sh2,G4)))):- .‘
€1(G3,252), e(G4.252). X
maps(ah2,a52,353). :‘
closed(as3,af3). |
dlosed(as2af2). 0
3
'0
Clauses derived from not(hom(compose(ah2,ah1),as1,af1,as3,af3)): :[
(4
X
el(gSas1). h
el(g6,as1). *
false :- 3
! eq(spply(sh2 apply(ah1,apply(af1,ord_pair(gS.g6)))), D
! apply(af3,ord_pair(spply(sh2,apply(sh1,g5)).spply(sh2,apply(ah1 g6))), !
maps(compose(ah2,ah1),as1,213), 4
‘ closed(as3 af3), N
closed(as] af1), o
oy
_\',
} Y
Y Note that our top-level goal has become: :
i ‘i
flhe b 'T
eq(apply(ah2 apply(ah1.2pply(afl,ord_pair(35.46)))), g
apply(af3,ord_pair(apply(ah2,spply(sh1 g5)).apply(ah2.spply(sh1 6)))). ;
maps(compose(ah2,ah1),as1,a13), "
' closed(asd af3), L)
K closed(as1 af1). 3
) X
;]
. 2
In addition to these input clauses, we added three axioms. The first two of these are trivial while the third,
although non-trivial, can be derived by the prover in 24.63 cpu seconds after 15 inferences. ¢
\
) .v
. Axioms for proof of homomorphism theorem:
N,
eq(oppiy(XF1S1).spply (KF2,52)) - "
0q(51,53), eq(apply(XF1,53).apply(XF2.52)).
. el(apply(XF X),52) :- maps(XF,S1,52), el(X.S1).

mape(compose(X.,Y),S1.53) :- mape(Y,S1,52).maps(X 52,53).

t AT E Ga oW § A TP L LR o g Rat uah .0 gl F & N N) e 3% ' 4% 2%a 1'a"R%" ot Ak ¥ SR Al) @ 4.8 5.0 "0 g% AW

Finally, we added some extra rewrite rules which serve only to cut down on the size of data structures that

result from term rewriting.

Rewrite Rules to handle large terms:

rewrite(f32(ah1,as1,af1 252 af2),g1).
rewrite(f33(sh1,as1,af1,252 2f2),g2).

rewrite(f32(ah2 252,212,883 ,4f3),g3).
rewrite(f33(ah2,252,12,213 af3),g4).
rewrite(f32(compose(ah2,ah1),as1,af1,253,af3),g5).
rewrite(f33(compose(ah2,ah1),a31 af1 ,233,af3),86).
rewrite(apply(compose(XF1,XF2),S)apply(XF1,apply(XF2.5))).

Given this preprocessed input, sprfn is able to derive the following proof of the theorem:

proof found

false:-lemma((eq(apply(ah2.apply(sh1 apply(af] .ord_pair(g5.g6))).
spply(af3,ord_pair(spply(ah2.apply(ah1 g5)),
apply(sh2 apply(ah1,g6)))):-),

(maps(compose(ah2.ah1),as1 as3):-
maps(ahl 211 as2),
maps(ah2,as2 213)),

closed(as3 af3),
closed(as} af1).

size of proof 18

30.2333 cpu seconds used
14 inferences done

Note that the proof involves a lemma, which sprfn derived in the course of its operation. If we so desire,
we can ask the prover to show us how it came up with this lemma. When we do s0, it responds with the

following derivation:

proof of lemma:

false:-(eq(apply(ah2,apply(sh1.apply(af1,ord_pair(g5.g6)))).
spply(af3,ord_pair(apply(ah2 spply(ah1,g5)),
apply(ah2 apply(ah1.g6))))):-

lemma((eq(spply(ah1 apply(af1,ord_pair(g5 46))),
apply(af2,ord_pair(apply(ahl g5)apply(ah1,g6)))):-1).

(eq(apply(ah2,apply(af2,ord_peir(apply(shl g5).apply(ah1,g6))))

spply(af3,ord_pair(spply(ah2 apply(ah1 35)).
apply(ah2 apply(ah1,g6))))):-

16

. . , LS gy m -~ -
"'l\“'.t'.‘t‘.'li ‘.‘i.‘%‘q.?..'l..‘l. ""-‘.'\"" f‘“'A‘.‘u‘.‘i".l‘sl'f‘l'.‘.."t.. l‘sl'.. L.I.A "~‘l.,‘l'.‘|‘\ W l.,.l'- NSRS AR AR AN .‘l YOI W A o i‘;" “b‘- W RS, MU

U ATV RS AL AT LR TSV AT UL T ATUSITAT T R LR R L RO RTE LU) Vol bl Vet 2l 1,0 N o B A ¥ Tad # - ‘, R ® 8" g TWINE)

lemma((cl(apply(ah1.g5)as2):-)), it

(cl(apply(ahl g6),252):- "t
maps(ah1,as] as2).el(g6,as1)))). i
size of proof 11 :':
p
26.9166 cpu seconds used)
13 inferences done :
Od
.
g
4
e
W,
6.
6. Summary of Results and Some Outstanding Problems .
4
The techniques we employed allowed us to prove moderately sophisticated set theoretic theorems in f'
[N
rapid time with few inferences. These theorems would have been much more difficult to derive without the '.:
N
rewrite rules; indeed, sprfn was unable to derive some of them when run without the rewrite rules. -'j;
Undoubtedly it would have been beyond the power of a typical resolution theorem prover to derive most of Mt
the theorems in question. '::f
A
We have found that removing the tautologous portion of a theorem by means of some filter such as |'1
"
our tautology checker seems to speed up the derivation time, by allowing the prover to focus its attention ::’
)
|
on the non-tautologous aspects of the theorem. Furthermore, we discovered that the depth to which term ‘ﬁ
t
-4
rewriting is allowed greatly effects the prover’s ability to arrive at a proof. Clearly, more work needs to be %
¥
done in this area. At the present time, human intervention is required to adjust term rewriting depth; hope- ”
§
fully this can be automated to some extent in the future. : »
]
h
]
Our research leads us to conclude that preprocessing input clauses by means of rewrite rules is also :
\
highly effective in directing a theorem prover's attention towards a fast, relatively short proof. Although :ﬁ:
. L
this kind of preprocessing is presently being done by hand, we are confident that it can be fully automated.
’)
Finally, among the practical results that we obtained, it bears mentioning that it pays to avoid distri- :
buting "or” over "and” by means of rewrite rules. g:
!
17
A
...... A]

) R I A At 1t e p e e a s W PR N " - TR AP €,
SERRMNTIA LS RN W W iy .'a..‘!?»l..‘b. .| o\ '\ .l \"‘ A 'f‘ ” N S 02‘01. O X .ltl‘pl‘ Ay ' '! N N

At the same time, we discovered that there are limits to the power of term rewriting in connection

with proving theorems from set theory. For one thing, we found that the sizes of clauses grows almost

exponentially when terms are rewritten by terms which are themselves subject to being rewritten, and so
forth. Although this problem has no affect on soundess, the physical limitations of the computer itself

come into play at this point, causing the prover to run out of stack before it can complete its rewriting

phase.

We also realize that our procedure is not complete, if rewriting takes place at the wrong time. For
example, suppose we have the rewrite rule: B ->> P(x) and we wish to demonstrate that the following

theorem is a tautology:

B V(~P(a)A~P(b))

If we rewrite B before we distribute "or" over "and", we have:

P(x)V(-P(a)A~P (b))

from which we can only derive:

(Px)V~P@)APx)V~P (b))

and this is not tautologous no matter how we instantiate the variable x. Yet if we distribute "or" over "and"

before rewriting B, we have:

BV~P@)r@BV~P(d)

from which we can derive the tautology:

(P x)V~P(@)APy)V~P (b))

since Prolog will provide a different variable each time it replaces B with P(x).

NN T RN uJ SN WY Yt i3~ o8 N - L3 XA YT YR g §° L yqu RIS Y S2's 4%

This raises the following questions: Is term replacement more complete than term rewriting? How
complete is term replacement for existentially quantified variables? Is replacement equivalent to delayed

term rewriting? More work needs to be done before we are in a position to answer these questions.

Finally, the approaches to term rewriting that we explored are not effective when trying to prove
theorems that require creative insight. For example, in one of our experiments we tried to deduce Cantor’s
Theorem using our rewrite rules. However, we discovered that sprfn was unable to find the proof without
being given quite a bit of non-trivial information. Specifically, we had to provide it with axioms implying
(1) that any function induces its own diagonal set and (2) that the relation which pairs a unit set with its sin-
gle element is a one-one function. Once these axioms were supplied, by making use of our rewrite rules
the prover was able to derive Cantor’s Theorem in 33.65 cpu seconds with 12 inferences. Nevertheless,
one would like the prover to be able to realize on its own that such sets and functions exist. Yet recogniz-
ing that there is such a thing as the diagonal of a function and that such a set might be useful in this case
requires a kind of insight that goes far beyond syntactic manipul\ations. Unfortunately, term rewriting alone

does not provide the necessary machinery for the prover to possess this kind of creative insight.

References

[1]1 Plaisted, D.A., ‘A simplified problem reduction format’, Artificial Intelligence 18 (1982) 227-261

(2] Boyer, Robert, Lusk, Ewing, McCune, William, Overbeek, Ross, Stickel, Mark, and Wos, Lawrence,
‘Set theory in first-order logic: clauses for Godel’s axioms’, Journal of Automated Reasoning 2
(1986) 287-327

[3) Plaisted, D.A., ‘Another extension of Horn clause logic programming to non-Homn clauses’, Lecture
Notes 1987

{4] Plaisted, D.A., ‘Non-Hom clause logic programming without contrapositives’, unpublished
manuscript 1987

[S] Loveland, D.W., Automated Theorem Proving: A Logical Base, North-Holland Publishing Co.,
1978, Chapter 6.

19

X 4 -y - CPV. U RS - At Tt A LY R, T RN St g AT AT T A
"‘«"ﬁ..“-‘.’h‘,'-n" Jt‘n“‘p'l‘«'l\‘a’i an.ln '. n' Q“ |‘|A 'F > ._.“.n ..5 B % § ,.l N N ‘.?\ ", " ., N g oy

L AN

-
T
s

-

-
-

ool
Yy ¢
P Bt A

-

x5

-
o T o P
Caian B B

[H

.

-
PO

-y, =
-5 0cShar opt

[6]) Korf, RE., ‘Depth-first iterative-deepening: an optimal admissible tree search’, Artificial Intelligence v
27 (1985) 97-109. ¥

e

¥4

R T e e o

2 ;

-
-

20

- 5K
- Y

- ~ac N . . T P I T R 1.7 - PP AW TR T T Y T ” PRI
.:_A‘l‘!_"f.n‘f‘l,‘,\J‘l.i‘l.!_HQ.J..".. "-\ \-- \-’_.\, 3 n.\ f S s ' o .. ‘...._'- " (X k) Y e Py Nty P

Lo TN O O T Y O R O R R N R ™ R R T O T O T PO WO U O WU Yoy

Appendix A

Code for Routines that Perform Top Level Replacement and General Rewriting

replace_rewrite(X,Y,YN) :-

(replacements -> replace(X,X1,XN1),

((rewrites,+ f_chaining) -> rewrite(X1,Y , XN1,XN2) ;
XN2=XN1,Y=X1);

((rewrites, + f_chaining) -> rewrite(X,Y,XN2) ;
(Y =X, copy(Y,XN2)))),

(Y=XN2->YN=Y;
(copy(Y.YN),
numbervars(YN,0,))),!.

replace(X,Z,ZN) :- % X is input, Z output, ZN possible ground instance
copy(X,XN),
X=XN-> % ground term
replace(X,Z,XN,ZN) ;
(numbervars(XN,0,),
replace(X.Z,XN,ZN))).

replace(X,Z, XN ZN) :-
replacel(X,Y,XN,YN), !,
replace(Y,Z,YN,ZN),
pprint(replace(X,Z)).

replace(X,X,XN,XN).

replace1(L,M,LN,MN) :- % do one step replacing at top level
L=LN-> % like rewritel below

(replace_rule(L,M), copy(M,MN)) ;

(copy(LN,LNC),

(LN == LNC -> % ground instance
(clause(replace_rule(LN,MN),true,Ref),
clause(replace_rule(L,M),true Ref)) ;
(copy(L.LC),
numbervars(LC,0,.),
clause(replace_rule(LL.C,MN),true Ref),
clause(replace_rule(L,M),true Ref))))).

% In rewrite(L.M,LN,MN), L is input term, M is rewritten term,
% LN is possibly ground instance of L, MN is possibly ground
% instance of M.

rewrite1(L,M,LN,MN) :- % do one step rewriting at top level
(L=LN-> % ground term

(rewrite_rule(L M), copy(M.MN)) ;

(copy(LN,LNC),

(LN =LNC -> % ground instance
(clause(rewrite_rule(LN,MN) true Ref),
clause(rewrite_rule(L ,M),true Ref)) ;
(copy(L,LC),
numbervars(L.C,0,),
clause(rewrite_rule(LC ,MN),true Ref),

21

e e O N P e R e (o R A A N P PO,

1, ‘.'\.. 2% .

D KOO ICAN T T

v

v,
s St

L e |

g
T]

e T e
-

e T T

e e
NN A

- . - w

1]
f
4

‘a7, : T) gia atg o Bt a0 it B Gt Rt ek B B9, b A Ut p din s 3 A

clause(rewrite_rule(L,M),rue Ref))))).
rewrite_filter(X X) :- var(X),!. % can’t rewrite a variable

% rewrite_filter(and(X,Y),and(X,Y)) :-!. % don’t rewrite a conjunction,
% wait and rewrite subgoals separately

rewrite_filter(X.,X) :-
+ top_connective(X),
copy(X.Y),
irreducible(Y), !. % if irreducible, stop.

rewrite(X,Y,YN) :-
rewrite_filter(X,Y), !.

rewrite(X,Y,YN) :- % add third argument, numbervars’d
copy(X,XN), % term
X=XN-> % ground term
rewrite0(X,Y . XN,YN) ;
(numbervars(XN,0,),
rewriteO(X,Y,XN,YN))).

rewrite(X,Y, XN,YN) :-
rewrite_filter(X,Y),, XN = YN.

rewrite(X,Y, XN,YN) :-
rewriteO(X,Y, XN,YN).

rewriteO(X,Z, XN ZN) :- % do outermost rewriting
rewrite1(X,Y,XN,YN),!,
pprint(rewrite(X,Y)),
rewrite(Y,Z,YN,ZN).

rewriteO(X,Z, XN ZN) :- % reduce subterms, assert
rewrite_args(X,Y XN,YN),!, % irreducible if so
(X =Y ->rewrite2(Y,Z,YNZN) ;
Y=2,
(top_connective(Y) -> true ;
(copy(Y,W), numbervars(W.,0,),
passert(irreducible(W)))))).

rewrite2(X,Z,XN,ZN) :- % do one rewrite at top level
rewrite1(X,Y,XN,YN),!, % then innermost rewriting
pprint(rewrite(X,Y)),
rewrite(Y ,Z,YN,ZN).

l'ewri(eZ(x,X,XN,XN) -
(top_connective(X) -> true ;
(copy(X,W),
numbervars(W.0,), % assert irreducible term
passert(irreducible(W)))).

22

‘aBVa B8 S0 8 0 U Rt Dot bt Bp7 et B Ay

\ | 3 - - e AN AT A PRt Y o
IO ANHOAONC t' 0..!1.&},!‘ KA N h.-h RN M e, b i) R L AT AN 02 VAL L e A T, E 0, S Vs, 2 P

R T O O R O T O N TR T T R R R O T O O T D N O O N " R " XA T X 7 XV Y™ X

)
N
3
Appendix B o
]
Code for Tautology Checker :: :
t) v
i
% X is input formula; after rewrite rules have been applied and v
% tautologous clauses have been removed, Y is retumed as the i
% non-tautologous remainder (if any) ”
tautology3(X,Y) :- ;Of
pprint(calling(tautology3(X,Y))), "
replace_rewrite(X,X1,), % apply rewrite rules to X : Y,
asserta(cnf_cnt(0)), .
cnf_expand(X1,X2), % remove tautologous portion of X o
retract(cnf_cnt()), 2
descend_sort(X2,X3), I
remove_subsumed(X3,X4), % remove subsumed conjuncts n:‘
reformulate(X4,Y), % reformulate back to CNF ,:.‘
taut_print(X4). % print non-tautologous remainder :.:
- :‘
cnf_expand(and(X.Y).Z) :- !, s
cnf_count(N), 3
pprint(call(N, cnf_expand(and(X.Y), Z))),
cnf_expand(X,Z1), % expand each conjunct
cnf_expand(Y ,Z2), W)
append(Z1,22,2), N
pprint(result(N,cnf_expand(and(X,Y), Z))). L
cnf_expand(or(X,Y).Z) :- !,)
cnf_count(N), N
pprint(call(Ncnf_expand(or(X.Y),Z))), :
cnf_expand(X,Z1), % expand each disjunct F
cnf_expand(Y,Z2), p
list_non_tauts(Z1,22,Z), % Z is non-tautologous remainder e
pprint(result(N,cnf_expand(or(X,Y), Z))). ; y
K{
cnf_expand(X,Z) :- ,D' 1
cnf_count(N), -
y A =. [x]’ IQ)
pprint(call(N cnf_expand(X,Z))).]
>
:at
% make a list (Z) of all the non-tautologous clauses that can be formed D\
% from the two input lists Ky
list_non_tauts((Z1HIZ1T),Z2,Z) :- Ry
list_non_tauts1(Z1H,Z2,L1), v
list_non_tauts(Z1T,Z2,L.2), N
append(L1.L2.2). N
N
list_non_tauts({]._,[]). 2
o
4
list_non_tauts1(Z1H,(Z2HIZ2T],Z) :- :
make_clause(Z1H,22H,C), N
taut_clause(C), % check if C is a tautologous clause Ko,
.‘(
23 it
'

TR ERTRESRE TN RE LERN IR PR R SO RN TR AR ML W (WU U ISRV IFUY L U NU U U NL U NE R NURUN N MU A 'Dq-lj-ir.'l“lrb.“;=
+

list_non_tauts1(Z1H,Z2T,L2),
Z=12.

list_non_tauts1(Z1H,[Z2HIZ2T),Z) :-
make_clause(Z1H,Z2H,C),
list_non_tauts1(Z1H,Z2T,L2),
append([C],L2,Z).

list_non_tauts1(_,[1,00).

% C is a taut_clause iff C contains Y and not(Z) where Y ==Z
taut_clause(C) :-

append(L, [XIT}, C),

negate(X,Y),

memq(Y,T).

i,

3,
bj‘h:(n

7
A Ay Ay

", ®xx%

AN S T Y
A ArEks

.

x| 1

X 2 - - » - - L W - s %
BT A PO B S C i W T Wy SO A W DT i WA T v TUR N AC AR o AR ron AN AN N

Appendix C

Axioms and Rewrite Rules Based on von Neumann-Bernays-Gé del Set Theory

7. Standard Rewrites for Logical Connectives

rewrite(if(X,then(Y)), or(not(X),Y)).
rewrite(not(or(X,Y)),and(not(X),not(Y))).
rewrite(not(and(X,Y)),or(not(X),not(Y))).
rewrite(not(not(X)),X).
rewrite(or(X,and(Y,Z)),and(or (X, Y),0r(X,Z))).
rewrite(or(and(X,Y),Z),and(or (X,Z),0r(Y,2))).
or(X,Y) :-- prolog(tautology(or(X,Y))).

or(X,Y) :-- X.
or(X,Y) :-- Y.
and(X,Y) :-- X,Y.

rewrite(l_and([X]), X).

rewrite(l_and([X,YIT]), and(X,J_and([YIT]))).
rewrite(not(l_and([X])), not(X)).
rewrite(not(l_and({X,YIT])), or(not(X),not(l_and([YIT])))).
rewrite(l_or([X]), X).

rewrite(l_or([X,Y'T]), or(X,!_or([YIT]))).
rewrite(not(I_or([X])), not(X)).
rewrite(not(l_or([X,YIT})), and(not(X),not(l_or([YIT])))).

8. Axioms and Basic Definitions

Axiom A-1 little sets are sets (ommitted because all objects are sets)

Axiom A-2 elements of sets are little sets
(Vx y)ixey - mx)]

m(X) :- el(X,Y).

Axiom A-3 principle of extensionality
(Vx y)(Yu)m(u) > (uex S uey)] - x=y]

rewrite(eq(X,Y), and(sub(X,Y), sub(Y,X))).

rewrite(not(eq(X,Y)), or(not(sub(X,Y)), not(sub(Y ,X)))).
rewrite(meq(X,Y),l_and((m(X),m(Y).eq(X,Y)])).
rewrite(not(meq(X, Y)),1_or([not(m(X)) ,not(m(Y)),not(eq(X,Y))})).
rewrite(eq(set(X),set(Y)),meq(X,Y)).
rewrite(not(eq(set(X),set(Y))) .not(meq(X,Y))).
rewrite(eq(set(X),se(Y ,Z)),l_and([meq(X,Y),meq(X,Z),meq(Y Z)])).

rewrite(not(eq(set(X),sex(Y,Z)))J_or([not(meq(X,Y)),not(meq(X Z)),not(meq(Y.Z))])).

rewrite(eq(set(X,Y),set(2)),eq(set(Z),set(X,Y))).
rewrite(not(eq(set(X,Y),set(Z))) not(eq(set(Z),set(X,Y)))).

rewrite(eq(set(X,Y),set(W,2)) or(and(meq(X,W),meq(Y ,Z)),and(meq(X .Z),meq(Y,W)))).
rewrite(not(eq(set(X,Y),set(W,Z))) and(or(not(meq(X ,W)),not(meq(Y,Z))),

2§

or(not(meaq(X Z)),not(meaq(Y. W)))).

rewrite(eq(ord_pair(X,Y),ord_pair(W ,Z)),and(meq(X,W),meq(Y.Z))).

rewrite(not(eq(ord_pair(X,Y),ord_pair(W,Z))),or(not(meq(X,W)),not(meq(Y Z)))).
o Axiom A-4 existence of nonordered pair
) (Vuxy)uelxy} & [m@u)A(u=xVvu=y))
(xy)m({x.y)]
. rewrite(el(U,set(X,Y)), and(m(U), or(eq(U,X),eq(U,Y)))).
i rewrite(not(el(U,set(X,Y))), or(noy(m(U)), and(not(eq(U,X)).not(eq(U,Y))))).
';
?3 Definition of singleton set
3 vx){x}={x x}]
Y eq(set(X), set(X,X)).
.;: Definition of ordered pair ,
N (Vx y)l<x y>=({x}.{x y}}] .
. eq(ord_pair(X,Y), set(set(X), set(X,Y))).
@ m(ord_pair(X,Y)).
&
1
Y Definition of opp (ordered pair predicate)
R (vx)lopp () & Gy 2)Im(y) Am(z) Ax=<y z>]]
. rewrite(opp(X), L_and([m(Y), m(Z), eq(X, ord_pair(Y Z))])). i
o rewrite(not(opp(X)), I_or([not(m(f2(X))), not(m(f3(X))), :
: not(eq(X, ord_pair(f2(X).£3(X)))1)).)
Rl opp(ord_pair(X,Y)). ;
, Axiom of first X
:; Yz x)[ze first(x) @ m(z) A G v)im@)Amv)Ax=<uv>Nzeu]] ¢
¢ rewrite(first(ord_pair(X, Y)),X). :
: rewrite(el(first(ord_pair(X,Y)).Z).e1(X.Z)). ;
¢ rewrite(not(el(first(ord_pair(X,Y)),Z)) .not(el(X,Z))).

rewrite(el(Z, first(X)), 1_and(Im(Z), m(U), m(V), eq(X, ord_pair(U,V)), el(Z,U)])). '
b rewrite(not(el(Z, first(X))), I_or([not(m(Z)), nou(m(f4(Z,X))), not(m(fS(Z,X))), '
;e' not(eq(X, ord_pair(f4(Z,X),f5(Z.X)))), not(el(Z.f4(Z X)))1)). -.
R) L
h
o Axiom of second

(Vz x)[zesecond(x) & m(z) A Cuv)Imu)Amy)Ax=<uy>Azev]]
0 rewrite(second(ord_pair(X,Y)),Y).
2 rewrite(el(second(ord_pair(X,Y)).Z)e(Y Z).
X rewrite(not(el(second(ord_pair(X,Y)),Z)),not(el(Y 2))).
b rewrite(el(Z, second(X)), 1_and([m(Z), m(U), m(V), eq(X, ord_pair(U,V)), el(Z,V)])).
A rewrite(not(el(Z, second(X))), I_or([not(m(Z)), not(m(f6(Z,X))), not(m(f7(Z,X))),
; not(eq(X, ord_pair(f6(Z,X),f7(Z.X)))), not(el(Z.f7(Z X)))])).
g ,
" :
" 26 .

Iy I
L}

B ; g - . ’ N p . ., - ’ . . N
CORTe AT A Ay T VN IRESE) 0:"‘4,"‘, J._"L' v, "'Q"_ X .l‘g_lkl.\!‘.;’."', .',,.", .'.Q‘JI. .,’.‘ vl ('.‘i'._l‘..t'., NG SO Y A AT AT G T RS AR IR R ML MO

Axiom B-1 estin (e¢lement relation)
(Vz)[zeestin & m(z) Aopp(z) A first(z)e second (2)]

rewrite(el(Z, estin), 1_and([m(Z), opp(Z), el(first(Z), second(Z))])).
rewrite(not(el(Z, estin)), 1_or([not(m(Z)), not(opp(Z)), not(el(first(Z), second(Z)))))).

Axiom B-2 intersection
Vzxylze(xny) e m(z)Azex Azey]

rewrite(el(Z, join(X,Y)), and(el(Z,X), el(Z,Y))).
rewrite(not(el(Z, join(X,Y))), or(not(el(Z,X)), not(el(Z,Y)))).

Axiom B-3 complement
(Vzx)[ze~x &om(z)Nzéx]

rewrite(el(Z, comp(X)), and(m(Z), not(el(Z, X)))).
rewrite(not(el(Z, comp(X))), or(not(m(Z)), el(Z, X))).

Definition of union
(Vx . y)x Vy=~(~x"~y)]

rewrite(el(Z, union(X,Y)), and(m(Z), or(el(Z.X), el(Z,Y)))).

rewrite(not(el(Z, union(X,Y))), or(not{m(Z)), and(not(el(Z,X)), not(el(Z,Y))))).
rewrite(el(Z, union(X,Y)), or(el(Z,X), el(Z,Y))).

rewrite(not(el(Z, union(X,Y))), and(not(el(Z,X)), not(el(Z,Y)))).

Axiom B4 domain
(¥z x)[z € domain (x) € m(z) A Cixp)m (xp) A opp (xp) Axp € x A z=first (xp)]

rewrite(el(Z, domain(X)), 1_and([m(Z), m(XP), opp(XP), el(XP.X), eq(Z, first(XP))])).
rewrite(not(el(Z, domain(X))), 1_or([not(m(Z)), not(m(f8(Z,X))).not(opp(f8(Z,X))),
not(el(f8(Z,X).X)), not(eq(Z, first(f8(Z,X)))N).

Axiom B-5 cross product
Yz x,y)zexxy & m(z)Aopp(z) A first(z)ex Asecond(z)ey]

rewrite(el(ord_pair(X,Y),prod(W ,Z)),and(el(X,W),el(Y ,Z))).

rewrite(not(el(ord_pair(X,Y),prod(W ,Z))),or(not(el(X,W)).nov(el(Y Z)))).

rewrite(el(Z,prod(X,Y)), 1_and([m(Z), opp(Z), el(firs(Z),X), el(second(Z),Y)])).

rewrite(not(el(Z,prod(X,Y))), 1_or([not(m(Z)), not(opp(Z)), not(el(first(Z),X)),
not(el(second(Z),Y))])).

Axiom B-6 converse
(¥z x)[z€ converse (x) & m(z) Aopp (z) A <second (z).first(z)>€x]

rewrite(converse(ident),ident).

rewrite(el(Z converse(X)), I_and({m(Z), opp(Z), el(ord_pair(second(Z),firsyZ)),X)))).

rewrite(not(el(Z,converse(X))), I_or([not(m(Z)), not(opp(Z)),
not(el(ord_pair(second(2),first(Z)),X))])).

27

D
3
"
]
e
Axiom B-7 rotate_right w
(Vz x)[zerotate_right(x) & m(z)ACu,v,w)imm)Am@)Am(w)A 2
Z2=<U, <V w>> A<y <w u>>€x]] .'.
l,'
rewrite(el(Z, rotate_right(X)), I_and([m(Z), m(U), m(V), m(W), i’
eq(Z.ord_pair(U, ord_pair(V,W))), el(ord_pair(V .ord_pair(W,U), X)1)). X
rewrite(not(el(Z, rotate_right(X))), I_or([not(m(Z)), not(m(f9(Z.X))), 0
noi(m(f10(Z,X))), not(m(f11(Z,X))), W
not(eq(Z,ord_pair(f9(Z,X),ord_pair(f10(Z, X).f11(Z.X))))), :
not(el(ord_pair(f10(Z,X),ord_pair(f11(Z,X),f%Z.X))), X))])). -
4
Axiom B-8 flip_range .“:".
(V2 x)[z € flip_range (x) & m(z) A Gy w)mu) Am(v) Am(w) A)
z2=<u,<v,w>> A<y, <w,y>>ex]] it
a

rewrite(el(Z flip_range(X)), I_and([m(Z), m(U), m(V), m(W), :

-
--

eq(Z, ord_pair(U,ord_pair(V,W))), el(ord_pair(U,ord_pair(W,V)),X)])). fu
rewrite(not(el(Z flip_range(X))), I_or([not(m(Z)), not(m(f12(Z,X))), not(m(f13(Z,X))), '
no(m(f14(Z,X))), not(eq(Z, ord_pair(f12(Z,X),ord_pair(f13(Z,X).f14(Z,X))))), N
not(el(ord_pair(f12(Z,X),ord_pair(f14(Z,X).f13(Z.X))).X)1). s
b
=
Definition of successor \ ,c:
(Vx)[suce (x)=xU{x] .::g
&
rewrite(succ(X), union(X,set(X))). ‘:E:
;fﬁ;
Definition of 0 (empty set) 1"'*
(Vz)[z€0) I,
P
m(0). Y
not(el(Z.0)). e
Definition of V (universal set) ’:‘
(vz)[zeV o m(2)] ::‘
U
rewrite(el(Z,universe), m(Z)). :E::
rewrite(not(el(Z,universe)), not(m(Z))). .
Axiom C-1 infinity Y
&)m(y)AOey A(¥x)[xey — succ(x)ey]) ‘-'.
m(f15). ¥y
el(0,15). ®
el(succ(X), f15) :- el(X,f15). N\
Axiom C-2 sigma (union of elements) r,,-)
(Vz x)[z€ sigma(x) & m(z)ANSy)Im(y) Ayex Azey]] N
(Yu)lm () = m(sigma (u))] ®
rewrite(el(Z, sigma(X)), I_and(Im(Z), m(Y), el(Y X), el(Z,Y)))). .}'

O
rewrite(not(el(Z, sigma(X))), I_or([not(m(Z)), nom(f16(Z,X))), @)

15 4
3

. W T A s : e 2
RO T T O DN WO C S AT 3 T Tnin St Dot o S Lot Al W NS SRR AL SN SN S M,

.....

not(elf16(Z.X), X)), not(el(Z £16(Z. X)))1)). “:".
m(sigma(U)) :- m(U). ¢
h
Definition of subset \!
x y)xcy & (Yu)(m(u) - (uex s uey)]) ::(
‘ [
rewrite(sub(X.,Y), or(not(el(f17(X,Y),X)), el(f17(X.Y),Y))). Dy
rewrite(not(sub(X,Y)), and(el(U,X), not(el(U,Y)))). .
)
replace(sub(X,Y), or(not(el(f17(X,Y),X)), el(f17(X,Y).Y))). ni
replace(not(sub(X,Y)), and(el(U,X), not(el(U,Y)))). ity
sub(X,Z) :- sub(X,Y),sub(Y,Z). ‘::..'
Specialized subset rewrite rules :S
rewrite(sub(set(X),set(Y)).meq(X.Y)). ,:
rewrite(not(sub(set(X),set(Y))),not(meq(X.Y))). 3.
rewrite(sub(sei(X),set(Y Z)).or(meq(X,Y),meq(X.Z))). A

rewrite(not(sub(set(X),set(Y ,Z))),and(not(meq(X,Y)).not(meq(X.2)))). ,
rewrite(sub(set(X,Y)set(Z)),and(me q(X.Z),meq(Y Z))). ;
rewrite(not(sub(set(X, Y) set(Z))),or(not(meq(X .Z)) not(meq(Y,Z)))). o

rewrite(sub(set(X, Y),seW 2)),or(and(meq(X,W),meq(Y Z)), and(meq(X,Z)meq(Y,W)))). (N
rewrite(not(sub(set(X.Y),set(W Z))) and(or(not(meq (X, W)),not(meq(Y .Z))), 3
or(not(eq(X,Z)),not(eq(Y,W))))-] A
rewrite(sub(X,pset(Y)), or(not(el(f17(X.pset(Y)),X)), el(f17(X,pset(Y)),pset(Y)))). »
rewrite(not(sub(X,pset(Y))), and(el(U,X), not(sub(U.Y)))). 2
rewrite(sub(X join(Y,Z)), and(sub(X,Y),sub(X Z))). :‘,
rewrite(not(sub(X join(Y.,Z))), or(not(sub(X,Y)),not(sub(X Z)))). .
rewrite(sub(prod(X,Y),prod(W Z)),and(sub(X,W),sub(Y .Z))). :;;
rewrite(not(sub(prod(X,Y),prod(W Z))),or(not(sub(X,W)),not(sub(Y ,.2)))). I\
i

Axiom C-3 power set ‘5.

vz x)zepset(x) & m(z) Azex]

(Yu)lm(u) - m(pset (u)] 0
rewrite(el(Z, pset(X)), sub(Z.X)). o
rewrite(not(el(Z, pset(X))), not(sub(Z,X))). ; e
m(pset(U)) :- m(U). ,

"::

Definition of relation '\\‘

(¥2)(relation(z) & (¥x)[m(x) = (xez — opp (x))1] 3
rewrite(relation(Z), 1_or([not(el(f18(Z).Z)), opp(f18(Z)D)). <
rewrite(not(relation(Z)), I_and([el(X,Z}, not(opp(X))])). t 1

*‘
o

Definition of sing_val (single valued set) 5)

(Yx)[sing_val(x) & (Vu vy w)im@)Am()Am(w) > (<u,y>ex A<uw>ex = v=w)]] X
rewrite(sing_val(X), L_or([not(el(ord_pair(f19(X),f20(X)) X)), S

not(el(ord_pain(f19(X).f21(X)),X)). eq(f20(X).£21(X)N). :;:(
» i

ﬂﬂim 5:&;& (ﬁf P ,-"i’;‘;-cw‘, A L W -.- .

- rde 7

s 2 NG j J / T Iy) N % <y W o of) $, 4 3
’ !n".\"“.ﬂ"‘t“ \”5""“"‘3\',' I!‘...,‘f’.,‘A".‘d‘.lii“l"‘t'e‘l.!‘"sl‘:‘l'. |‘!‘l'- AL AU AT S I". s A N N LY . W 3 2 Wbtk b

i b 2 et AT AN a) b W A £ SR TR R B .t @ et Bg¥ Ba Wa Fh gV oTE 0k e 000 R0 e g

v U
t

- e

rewrite(not(sing_val(X)), I_and([el(ord_pair(U,V),X), el(ord_pair(U,W).X),
not(eq(V,W))D)).

Definition of function
(Vxf) function (xf) &> relation (xf) A sing_val (xf)]

AR IR

rewrite(function(XF), and(relation(XF), sing_val(XF))).
rewrite(not(function(XF)), or(not(relation(XF)), not(sing_val(XF)))).
rewrite(function(converse(XF)),if(and(el(ord_pair(gd (XF),g5(XF)) XF),
el(g6(XF),g5(XF))) then(eq(g4(XF).g6(XF))))).
rewrite(not(function(converse(XF))),or (and(el(X XF) not(opp(X))),
I_and([el(ord_pair(X,Y),XF),el(ord_pair(Z,Y) XF),not(eq(X,Z))1))).

Axiom C-4 image and substitution

(Vz x xf)[z€image (x xf) & m(z) AGy)m(y) Aopp (y) Ayexf A 1
first(y)ex Asecond (y)=z]]

(Vx xf Yim (x) A function (f) = m(image (x xf))] ¢

rewrite(el(Z, image(X,XF)), L_and([m(Z), m(Y), opp(Y), el(Y XF),
el(first(Y),X), eq(second(Y),Z)])).

rewrite(not(el(Z, image(X.XF))), |_or({not(m(Z)), not(m(f22(Z X XF))),
not(opp(f22(Z X XF))), not(el(f22(Z,X XF),XF)),
not(el(first(f22(Z,X,XF)),X)), not(eq(second(f22(Z,X.XF)),Z))])).

m(image(X,XF)) :- m(X), function(XF).

Definition of disjoint
(vx .y)disjoint (x,y) & (Yu)[m(u) > uéx Vuey)]]

rewrite(disjoiny(X,Y), or(not(el(f23(X,Y).X)), not(el(f23(X,Y),Y)))).
rewrite(not(disjoint(X,Y)), and(el(U.X), el(U,Y))).

L A R S RTINS

-
-

Definition of set difference
(¥x,y2)Ixey-z o xey Axéz)

rewrite(el(X,diff(Y,Z)), and(el(X,Y),not(el(X,Z)))).
rewrite(not(el(X,diff(Y Z))), or(not(el(X.Y)).el(X,Z))).

Axiom D regularity
("x)[x 20 = Cu)m(u) Auex Adisjoint (u x))]

el(f24(X),X) :- not(eq(X,0)).
disjoint(f24(X),X) :- not(eq(X,0)).

Lo e oo, e r P EIES ..

~ Axiom E choice
Gh)function () A (¥x)[m(x) Ax#0 - Gy)m(y)Ayex A <x,y>eu]]

function(f25).
el(f26(X),X) :- m(X), not(eq(X,0)).
el(ord_pair(X,f26(X)),£25) :- m(X), not(eq(X,0)).

>

\

I;v
0‘0
a:.'
!9
l'c
9. More Set Theory Defintions ::
s
Definition of range b
(vz x)[zerange(x) & m(z) A (Sxp)im(xp) Nopp (xp) A xp € x A z=second (xp)]) .
%,
rewrite(el(Z range(X)),l_and((m(Z),m(XP),opp(XP),el(XP,X).eq(Z.second(XP))))). o
rewrite(not(el(Z range(X))),1_or([not(m(Z)),not(m(f27(Z,X))),not(opp(27(Z X))), .
not(el(f27(Z,X),X)).not(eq(Z .second(f27(Z X))))))). :g
Definition of identity relation &
(Vz)[zeident & m(z) Aopp(z) A first(z)=second (z)] ;
X
rewrite(el(ord_pair(X.Y).ident),eq(X.Y)). ﬂ
rewrite(not(el(ord_pair(X,Y),ident)),not(eq(X,Y))). X
rewrite(el(Z ident),1_and([opp(Z).eq(first(Z),second(Z))])). i
rewrite(not(el(Z,ident)),1_or([not(opp(Z)), not(eq(firs(Z),second(Z)))))). o
!
o
Definition of restrict (V is universal set) :::
(Yx .y)restrict (x .y =x Xy xV)] ’::
rewrite(restrict(X,Y),join(X,prod(Y ,universe))). 55‘
()
\
Definition of one_one (one-to-one function) ":
(Yxf Yone_one (xf) & function (xf) A function (converse (xf))] \ ::
rewrite(one_one(XF),and(function(XF),function{converse(XF))}). vﬁ‘!
rewrite(not(one_one(XF)),or(not(function(XF)) ,not(function(converse(XF))))). ‘:’;
N
Definition of apply K
(V21 .y)z€apply Of) © m(z) AGw)im(w) A app (w) Awesf A 0!
Sfirst(w)=y A zesecond(w)]] ‘
rewrite(el(Z,apply(XF,Y)),L_and([m(Z),m(W),opp(W),el(W XF),cq(first(W).Y), o
el(Z,second(W))))).]
rewrite(not(el(Z,apply(XF,Y))),l_or([not(m(Z)),not(m(f28(Z,XF,Y))), Wy
not(opp(f28(Z XF,Y))), not(el(f28(Z,XF.,Y),XF)), Y
not(eq(first(f28(Z,XF,Y)),Y)), not(el(Z,second(f28(Z,XF,Y))))])). .
)
Definition of app2 3
(Vxf x,y)app 2(xf x .y Y=apply (xf ,<x,y>))] W
™
rewrite(app2(XF,X,Y),apply(XF,ord_pair(X,Y))). o
)
Definition of maps 9
(Vxf x .y)imaps (xf x.y) © function (f) A domain (xf y=x A range (f)<y} o
S
rewrite(maps(XF,X,Y),l_and([function(XF),eq(domain(XF),X) sub(range(XF),Y)})).
rewrite{not(maps(XF,X,Y)),_or([not(function(XF)),not(eq(domain(XF),X)), '-’
not(sub(range(XF),Y))])). '
l.;
2
31 i:‘
)
3

n (¥ % N ? c PP »] v pa apr : SRR R < a AN
BORE MR L e e G Y 0 B Tt St Nt L M0, n"l»."l, ST T T G ST a0y ‘F u,. ALY T W R Y

ZORORORN

[N Y £y
R LN

s g At Wn b ek 58 Lk taf a® 32k aab Yog sal cab. Tl va Sob gl Uch suf €2y Cay v, R R

Definition of closed
(Yxs xf)closed (xs xf) &> m(xs) Am(xf) A maps (xf xs xxs xs)]

rewrite(closed(XS XF),|_and([m(XS),m(XF),maps(XF.prod(X$,XS),XS)])).

rewrite(not(closed(XS,XF)),l_or([not(m(XS)),not(m(XF)), not(maps(XF,prod(XS$.XS),XS))])).

Definition of composition
(V2 xf xg)lzexg Of om@IANCh.y w)im(Ex)AmO)Am(w)A

z=<x,y> A<x w>exf A<w y>exgl]]

rewrite(el(Z,compose(XG,XF)),l_and(Im(Z),m(X),m(Y),m(W),eq(Z.ord_pair(X,Y)),
el(ord_pair(X,W),XF),el(ord_pair(W,Y),XG)))).
rewrite(not(el(Z.compose(XG,XF))),l_or([nou(m(Z)) .not(m(f29(Z,XF,XG))),
noy(m(f30(Z,XF,XG))),not(m(f31(Z XF XG))),
no(eq(Z,ord_pair(f29(Z,XF XG),f30(Z,XF,XG)))),
not(el(ord_pain(f29(Z,XF XG).f31(Z XF,XG)) XF)),
not(el(ord_pair(f31(Z,XF XG),f30(Z,XF,XG)),XG))]).

Definition of homomorphism

(Vxh xs 1.xf 1.xs2xf 2)[hom (xh xs 1 xf 1,x52.xf 2) © closed (xs 1 xf 1) A closed (xs 2xf 2) A
maps (xh xs 1xs2) A (¥x,y)[(xexs1Ayexs1) —»
apply (xh .app 2(xf 1.x ;y))=app 2(f 2.apply (xh x).apply (xh y))]}

rewrite(hom(XH,XS1,XF1,XS2,XF2),I_and([closed(XS1,XF1) closed(XS2 XF2),
maps(XH,XS1,XS2),if(and(eNf32(XH XS 1,XF1,X52,XF2),XS1),
el(f33(XH,XS1,XF1,XS2,XF2),XS1)),
then(eq(apply(XH,app2(XF1,£32(XH,XS1,XF1 ,XS2,XF2),£33(XH, XS 1, XF1,XS2,XF2))),
app2(XF2 apply(XH f32(XH,XS1,XF1,X52,XF2)),
apply(XH,f33(XH,XS1,XF1,XS2, XF2))))))])).
rewrite(not(hom(XH,XS1,XF1,XS2,XF2)),_or([not(closed(XS1,XF1)),
not(closed(XS2,XF2)),
not(maps(XH,XS1,XS2)),and(and(el(X,XS1),el(Y XS1)),
not(eq(apply(XH,app2(XF1,X.Y)).app2(XF2,apply(XH,X),apply(XH,Y))))))).

Definition of "equinumerosity”
(Vx.y)x=~y) & (xf)one_one (xf) A domain (xf y=x Arange (xf }=y1]

rewrite(equinum(X,Y),l_and([one_one(XF),eq(domain(XF),X),eq(range(XF),Y)])).
rewrite(not(equinum(X,Y)),1_or([not(one_one(g1(X,Y))), not(eq(domain(g1(X,Y)).X)),
not(eq(range(g1(X,Y)),Y))))).

Definition of "less than or equal to"
(xy)x<=y & GE)zgy Ax=z])

rewrite(less_eq(X,Y),and(sub(Z,Y),equinum(X ,Z))).
rewrite(not(less_eq(X,Y)),or(not(sub(Z,Y)),not(equinum(X,Z)))).

32

f-’” A I3 v v . e ...'. Ly

. Vo - e n
1% L I‘..‘-...t [N | !A‘ivl’» WA AR, by 9, % v N,

J@ PFI LA,
g > s XX]

P AR PRI TR FLSE N (AN ¥ AN TR UV IRV LN AN TTUY UV VST I NN AR o ALILTEN I\ > daY ¥y WL NMNY 8 g AR D 2 I

h
‘ 2
)
Od
B
| .
| ",
LU
Appendix D .
[N
>
Test Results Using a Tautology Checker :::
c'\'
.‘.:1
i
Table 1 X
Theorems 3
(1) _[] false :- eq(union(a,b)union(b.a)). b
(2) [[false :- eqGoin(a,b),join(ba)). Y
(3) || false :- eq(union(a,a)s). ‘.:0“
(4) [V false :- eq(join(a.a),a). !
(5) || false :- eq(union(s,comp(a)), universe). ’ 4
(6) || false :- eq(join(a. 3)), 0). a
@ || false :- universe),0). KRy
(8) || false :- eq(comp(0) universe). A
) |] false :- eq(com a)a). XN
(10) || false :- eq(union(a,0).2). AN
(11) || false :- eq(join(a,universe) a). X
(12) || false :- eq(union(a universe) universe). (N
(13) || false :- eq(join(a,0),0). s
(14) || false :- eq(union{union(a.b).c).uni union(®,c))). *;.‘,
(15) || false :- eq(ioinioin(a,b);c) join(a,join(b c))). &
(16) mn if(sub(a,b), then(eq(join(a,b),))). §°:.
(17 alse :- eg(comp(union(a b)), join(comp(a),comp(b))). 9
(18) :- eq(comp(join(a,b)),union(comp(a),comp(b)). ey
(19) false - eq(join(union(a,b),union(s.comp(b))),a). .)
20) |] false :- eq(diff(a,b),join(a . <.
(21) || false :- eq(union(a universe)universe).
| (22) || false :- eq(join(a,union(b,c)), union(join(a,b), join(a,c))). i
(23) || false :- eg(union(a join(b,c)), join(union(a b), union(a.c))). o
24) [[fase :- sub(0.a). i
@5) || false ;- if(and(suba,b c)),then(sub(a,c)). XY
(26) || false :- if(sub(a b) then(el(a,pset(d)))). :'t
(27) |] false :- if(disjoint(a,b) then(eq(join(s,b) 0))). o
(28) || false :- sub(a,union(a,b)). 4 :‘
(29) [[false - sub(diff(a b)a). N
(30) false .fgga,,omgg,cn, then(and(sub(a,b) sub(a.c)))). »
1) = in(a b)) join(pset(a) pret(b))). ::e
| (32) fd_umm&mz&@»
(33) || false :- sul 2 join(b,¢)),join b),prod(a.c))). >
(34) 1] false :- if(and(sub(a.b C, sy 3 (b,d)))).
(35) || false :- if(and: b c,d)),then(eq(ord_pair(a.c).oxd_pair(b.d)))).
(36) || false :- if(eq(a,ord_pair(b.c)) th a))). K&
(37) || false :- if(and(m(a) m(b)) then(sub(set(a) set(a b)))). \
(38) || false :- if(and(m(a),m(b)), then(eq(set(a,b) set(b.2)))). a‘i '
§.
Note that theorems (31) and (32) are the same. However, (31) was proven using a rewrite rule for the sub- ;:;.
set axiom, while (32) was proven using a replace rule for the subset axiom. Using a replace rather than a | ',:
rewrite rule prevented terms containing the "subset” predicate from being rewritten before tautology check- o
ing was performed. This allowed the prover to find the proof much faster in the case of this particular b
theorem. e’
[&4
»

wmmmv“vmm.wv.mmmwv_j

Table 2
[T With “or-over-and” || Without "or-over-and"
Distribution Rules Distribution Rules
Theorem || Time | Inferences || Time | Inferences

()] 3.23 0 25 0
(2) 4.18 0 4.14 0
3) 1.66 0 1.61 0
“) 1.68 0 1.76 0
(5) 593 4 531 4
(6) 596 6 5.85 6
(V) 3.66 4 3.5 4
8) 2.7 2 2.68 2
(¢J)] 573 4 4.86 4
10 291 2 253 2
(11 4.53 4 4.46 4
(12) 4.73 4 4.33 4
13 2.76 2 273 2
(14) 9.68 0 5.51 0
(15) 10.88 0 10.88 0
(6) 7.48 4 491 4
Qan 10.86 0 6.64 0
(18) 18.1 0 594 0
19 9.34 0 5.33 0
(20) 10.11 S 8.73 S
21 4.66 4 4.53 4
22) 20.55 0 8.44 0
23) 19.88 0 1.13 0
24) 1.26 2 1.18 2
25 12.26 8 9.63 8

(26) 3.76 4 3.21 4
[e1)) 18.36 14 15.85 14
(28) 0.81 0 0.78 0
(29) 0.78 0 0.84 0

30) 40.76 16 24.04 16
an 217.96 32 189.38 32
32) 4.83 0 4.28 0

(33) 3.38 0 n 0

(34) 63.55 32 34.63 16
393) 15.96 0 4.93 0

(36) .11 23 37.78 16
(&) 61.21 0 4.25 0

(38) 109.00 0 8.34 0

These results were derived by using a tautology-checker in conjunction with rewrite/replace rules.

SUMMARY: In each case, the number of inferences requized is virtually the same whether or not the "or-

over-and” distribution rules are used. However, in almost every instance there is a speed-up when these

rules are not used. Furthermore, as a general rule it seems that as the amount of time required to prove the
. theorem increases, the greater the speed-up when the "or-over-and™ rules are not used.

Sy kR R QU YL I R N T T T Y NN N I I T UL N KT .U"
t’s
c’t’g‘H

DO TR R |v
,l'.:i:.: ny ."

DA
‘::I'.:i .'1'.':
RN
A
! o,
c'..o: :'n'f‘
ANINOS \
a':‘r':'s:‘:'Q'
¢ "! ‘;! 1 V'
‘i 4 OAX
ONAN
[N ". 3.7 g'.
g
RONCUOON
DG
e
5o
_ »‘.:,1 "‘!}:

%

}o. il
‘a XA
'm‘i’i
,G‘:“::(;“ :‘gr
‘ ‘i. *J " :t(
‘Nt' R
o }‘s‘ 1, 3 »
"l‘ﬁ 1 Q g

| 1t
:. l:%):p(
'l RONOG

F—/Z/MED
5%

f/'c_

- - - L J - - - - - - hd hd
g 0 T A M R R o R T AT I A A LA T R
.m‘ . ‘0' “::.‘::‘:’::5::: [l'; l l.. ‘Aﬁ'b l l'l' ..‘ ‘.‘' ..‘" '}:“:‘é]':. .l:'..: \ .‘..' ~:(.r‘::‘. 4‘ . Y '..'.'
ONSAO NA "‘0’ ::‘ (N " h‘ \“' : '.."l"'..":..':‘...:."“l."‘“‘:. ':‘.'l 0 ."' !
o W, OO0 h“o QDO RO A X .': '0"”'" R

